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A variety of sensor technologies can be considered for 
gas phase sensing

• Electrochemical

• Optical

• Thermal

• Mass
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(From E.M. Logothetis in Chemical Sensor Technology, 3, Kodansha Ltd.: 1991, p. 89)

Solid state electrochemical sensors have a proven 
history in high temperature, chemically harsh 
environments - the EGO sensor is simple and rugged



June 2002 Glass - SECA

• Reliability

• Sensitivity

• Selectivity

• Durability

• Manufacturability

• Integration

• Low cost

Need materials which can provide adequate response while 
surviving prolonged operation in a high temperature, high stress, 
corrosive environment

Automotive industry and fuel cell criteria for sensors 
are similar
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Expos ure  to a varie ty of
gas e s , w ith approximate
c ompos ition out of the  e ngine :

Nitroge n 77.4% Nitroge n oxide s 0.1%
Hydroge n 0.3% Oxyge n 1%
Carbon dioxide 10% Sulfur dioxide 0.1%
Hydroc arbons 0.1% Carbon monoxide 1%
Wate r 10% P, S i, Zn, Mn Trac e

Te mpe rature : -40 to 800°C, with s pike s  to 950°C pos s ible

Flow rate s : 10-30 g/s  normal; maximum of 150 g/s

Pre s s ure : 30 inc he s  of me rc ury

Shoc k: Me c hanic al s hoc k of 50 G with vibration le ve ls  to 15 G

Ele c tronic : Radio fre que nc y c ompatibility to me e t c orporate /gove rnme nt s tandards .
No EMI inte rfe re nc e

Life time : 10 ye ars  or 100,000 mile s  w ithout inte rve ntion

Calibration: Se lf-c alibrationg; s hort- and long-te rm drifts  not pe rmitte d

Re s pons e  time : 1 s e c ond or le s s  pre fe rre d.  Ne e d not monitor individual c ylinde r e ve nts

S ize : Pac kaging mus t fit unde r ve hic le  body

Powe r: Compatible  w ith 12 V DC

Othe r: Mus t be  totally inte rc hange able  (10 million de vic e s /ye ar)

Me as ure me nt s trate gy: If re lations hip is  infe rre d (e .g. me as ure  hydroge n and infe r HC), it mus t
be  robus t, we ll-e s tablis he d, and doc ume nte d

Additional exhaust emission sensor requirements
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There are two operational modes for electrochemical 
sensors

(a) Potentiometric (O2 sensor example) (b) Amperometric (O2 sensor example)

– Insensitive over much of oxygen range – Linear over much of oxygen range
E =

RT
nF

ln
P1

P2
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Electrochemical sensors for PEMFC vehicles -
technical targets

• Hydrogen “safety” sensor
− 0.1 to 10% hydrogen in ambient air
− Response time under 1 second

• Hydrogen sensor
− 1 to 100% hydrogen concentration in fuel gas
− Response time of 0.1 to 1 second for 90% response

• CO sensor
− 1 to 1000 ppm CO in fuel gas
− Response time of 0.1 to 1 second
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Approach

• Use proven technology: zirconia-based oxygen sensor
• Develop mixed potential electrodes that are sensitive to hydrogen for use 

without the need of a reference gas

V

“Inert” reference electrodeMixed potential electrode
that is sensitive to hydrogen

Cubic-zirconia electrolyte
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Experimental set up

Reference 
electrode

Metal Oxide
Electrolyte

Test Gas (inlet) Test Gas (exhaust)

Voltage leads
inside a alumina tube

Quartz tube inside a 
furnace
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With nanocrystalline electrode, sensor response time 
is reduced to 2-3 s

We use the Colloidal Spray Deposition 
technique to deposit the nanocrystalline
metal oxide electrode. 

Sensor response to hydrogen in 
air at 500°C. 

The response time is 2-3 s. 
However, the recovery time is 
much longer

Time between 2 data points: 1 s
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Sensor has good selectivity

• Sensor is one order of magnitude more sensitive to 
hydrogen than to methane

T = 500°C
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• Sensor response level identical when switched 
from dry to humid atmosphere (100% RH)

• Response time is   < 3 sec
• Recovery time is   < 200 sec

0

20

40

60

80

100

120

140

0 200 400 600 800 1000
Time (seconds)

dry to humidified gas

1%H
2
 in air

Air

reponse level

response level

600C

V
ol

ta
ge

 (m
V

)



June 2002 Glass - SECA

No drifting has been observed

• Baseline drifting is a major issue with conventional resistive sensors
• No baseline drifting nor signal amplitude change were observed 

with the mixed potential sensor
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Hydrocarbon sensor development for on-board
monitoring of catalytic converter performance

Engine Emissions

HC ~ 1.5 - 2.0 g/mile
CO ~ 9 -10 g/mile
NOx ~ 2.0 g/mile
SOx

H2O
CO2
N2

HC = 0.04 g/mile
CO = 1.7 g/mile
NOx = 0.2g/mile

ULEV Standards

Catalytic 
Converter

Tailpipe Emissions

Sensor

[O2] = 1%
N2, H2O
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Principle of LLNL hydrocarbon sensor

Hydrogen Sensor LLNL Hydrocarbon Sensor

V

dehydrogenation catalyst
Exhaust Gas

C - C
H H

H HH2 , P1 H2 , P2 ref

V

E = RT/nF ln (P1/P2)

Proton Conducting Electrolyte

Possible Catalytic Reactions:
- dehydrogenation
- steam reforming
- cracking 

C = C +  H2
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First generation HC sensor

SZY
electrolyte

Pt electrodes

Fe2O3 catalyst

SZY: SrZr0.9Y0.1O3
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The problem was a strong effect of oxygen on sensor 
signal
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The effect of oxygen may come from the reaction between hydrogen and oxygen
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Second generation sensor design

Old design: two Pt electrodes with 
the HC decomposition catalyst 
covering one electrode

New design: the catalyst is also one 
of the 2 electrodes

SZY
electrolyte

Pt electrode

catalyst

Problem: Pt catalyses the hydrogen 
oxidation, causing strong influence 
of the oxygen concentration on 
sensor signal

The correct selection of the catalyst 
can minimize the hydrogen oxidation, 
thus reducing the oxygen effect
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Effect of oxygen concentration on sensor response
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Sensor response to hydrocarbons

0
10
20
30
40
50

60
70
80

0 450 900 1350 1800

V 
(m

V)

t (s)

97

194

291

388

485

388

291

194

97

0

20

40

60

80

0 100 200 300 400 500

V 
(m

V)

[C4H10] (ppm)

Flow = 1L/min
[O2] = 0.1%
[C4H10]stoich. = 154 ppm

Response to n-butane

The sensor can be used in both lean-burn and fuel rich conditions
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Sensor response in the presence of CO and HC
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presence of CO, even when both CO and HC are present in the exhaust gas
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Results of the Dynamometer testing of LLNL NMHC 
sensor at Ford Laboratories
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Approaches to increase the electronic conduction in 
the catalyst layer

• Indium doped zinc oxide

• Bi-layer ZnO/Au 

• Bi-layer ITO/ZnO

• Composite catalyst

ZnO
Au

ITO
ZnO
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Composite ZnO + ITO catalyst

• Catalyst composition is 60/40 mole % of ZnO/ITO.  There is a 
continuous conduction path in the catalyst

• Response time is about 2 s.  This is the limit of the gas phase 
exchange in the test chamber!
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• The sensitivity to propylene is unusually high
• Detection limit could be below 1 ppm propylene
• The detection mechanism is unclear
• R.t at 650°C is 4 to 8 s

Sensor response to propylene

Sensor sensitivity
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Improved NOx sensing technology is needed for new 
vehicle emissions monitoring requirements

• Most advanced current design (electrochemical) is complex, 
expensive to fabricate, and suffers from poor stability and 
selectivity

• We are developing a solid state electrochemical NOx sensor 
for compression ignition direct injection (CIDI) engines that 
has high selectivity and low fabrication cost

• Target performance:
– Sensitivity to NOx: 1 - 1,000 ppm at operating T > 400° C
– Response time: 1 second or less
– Minimized (or no) cross-sensitivity to O2, SOx, NH3, urea, HCs, etc.
– Long term stability
– Packagable/Integratable



June 2002 Glass - SECA

NiCr2O4 sensor with a current bias gives increased NO 
sensitivity and 90% recovery time of ~1.5 seconds

NO2 sensitivity is high:  > +90 mV (500 ppm) with 90% recovery in ~ 4 seconds

650 oC
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Comparison of fuel cell feed gas and engine exhaust

Engine exhaust (vol. %)
Nitrogen 77.4 
Nitrogen oxides 0.1
Hydrogen 0.3
Oxygen 1
Carbon dioxide 10
Sulfur dioxide 0.1
Hydrocarbons 0.1
Carbon Monoxide 1
Water 10
P, Si, Zn, Mn Trace

Reformed gasoline composition (vol. %)
Component Before SOX (PROX) After SOX (PROX)

H2 34.8 32.1
H2O 28.6 29.1
CH4 0.4 0.4
CO 0.7 <10 ppm
CO2 14.8 14.9
N2 20.4 23.2
Ag 0.3 0.3

Gas composition from a pressurized, fluidized-bed coal gasifier (vol. %)
H2 CO CH4 H2O CO2 N2 H2S COS NH3

Air mode 16.8 27.9 1.8 3.8 2.8 46.0 0.68 0.02 0.16
Oxygen mode 29.4 38.0 4.0 17.3 9.5 0.54 1.07 0.02 0.24
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Sensors for diagnostics and feedback control for fuel 
cell systems

Air

Fuel

Steam

Feedback

Feedback

Feedback

Feedback

Fuel
Reformer Desulfurizer

Fuel
Cell
Stack

Exhaust
Gases

Sensors
CxHy
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CO2
Flow
Pressure
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CxHy
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Flow
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CxHx
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Summary

• Solid state electrochemical sensors can meet the demands of 
operation in harsh environments

• Fuel cell performance can be optimized with embedded 
sensors

• Chemical sensors take a long time to develop - don’t wait!

• Nothing is perfect
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